If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-5x-3=0
a = 50; b = -5; c = -3;
Δ = b2-4ac
Δ = -52-4·50·(-3)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-25}{2*50}=\frac{-20}{100} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+25}{2*50}=\frac{30}{100} =3/10 $
| 6-7q=4(q-4) | | 2^(13x+3)-5^(11x+7)=0 | | -6.8j+0.73=-4.9+7.95 | | 11x+4=12x+29 | | -6.8j+0.73=-4.9j+7.95 | | -5+7g-6g=-3g-1 | | r+4-10=-r+10 | | -4v-4=-5v-10 | | 2^(13x+3)=5^(11x+7) | | 3n+3n+2=5n-7 | | -8+7w=1+4w | | 5z=20z= | | -3d+10=-10-10-8d | | 9/5x=51 | | -10-2m-10=10+4m | | 8t+2=10+7t | | 0,25+(x-5)/(15-5)*0,35=0,3 | | 7.7g-4.09=8.32+9.4g | | (6x+4)+(10x+16)=180 | | (6x+4)(10x+16)=180 | | I2-14r+46=0 | | -9k+10=-9+10k | | 6x+410x+16=180 | | x+4+4x-8+7x-36=180 | | 6f-10=10+10f | | 64x^2=16x-3=0 | | (x-5)=10/7 | | (5x-15)+(3x+1)=90 | | 0,25+(x-5)/(15-5)×0,35=0,3 | | (5x-15)+(3x+1)=180 | | 1.7x=5-x | | -7+8*|-7x-3|=73 |